If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-0.8x-8x^2=0
a = -8; b = -0.8; c = +5;
Δ = b2-4ac
Δ = -0.82-4·(-8)·5
Δ = 160.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.8)-\sqrt{160.64}}{2*-8}=\frac{0.8-\sqrt{160.64}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.8)+\sqrt{160.64}}{2*-8}=\frac{0.8+\sqrt{160.64}}{-16} $
| 8k+3k-12=78 | | n+(n+2)=128 | | 9x-39+47=3x+10 | | 0.1x+5=0.3x | | n-17=-28 | | n-17=28 | | 45.44=9g+3.68 | | 7/4q=-5+2 | | 6x+1+36=x+7 | | n+(n+1)=45 | | 10x+7=6x-33 | | 3x/27+2=1 | | 138=6x | | 2(1+6x)=−82 | | x^2+2(2x)^2=900 | | 42=5y+8 | | -5(x-1)=4(-x+4) | | 4k+2k=−12 | | x+x-56=90 | | 4k+1+1=18 | | 12x+49=47 | | 1/2m+33=2m | | g/6+2=8.5 | | 4(x+6)+6=60 | | x+x/19=180 | | 12x+29=47 | | n+(n+2)=176 | | -2=8-3x | | g+2/6=8.5 | | 8x+3x-5=4x+16 | | 3x+10-9x-39=47 | | -5x-6(-6+3x)=105 |